Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Ther Methods Clin Dev ; 25: 439-447, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1815002

ABSTRACT

Adoptive T cell immunotherapy has been used to restore immunity against multiple viral targets in immunocompromised patients after bone-marrow transplantation and has been proposed as a strategy for preventing coronavirus 2019 (COVID-19) in this population. Ideally, expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-virus-specific T cells (CSTs) should demonstrate marked cell expansion, T cell specificity, and CD8+ T cell skewing prior to adoptive transfer. However, current methodologies using IL-4 + IL-7 result in suboptimal specificity, especially in CD8+ cells. Using a microexpansion platform, we screened various cytokine cocktails (IL-4 + IL-7, IL-15, IL-15 + IL-4, IL-15 + IL-6, and IL-15 + IL-7) for the most favorable culture conditions. IL-15 + IL-7 optimally balanced T cell expansion, polyfunctionality, and CD8+ T cell skewing of a final therapeutic T cell product. Additionally, the transcriptomes of CD4+ and CD8+ T cells cultured with IL-15 + IL-7 displayed the strongest induction of antiviral type I interferon (IFN) response genes. Subsequently, microexpansion results were successfully translated to a Good Manufacturing Practice (GMP)-applicable format where IL-15 + IL-7 outperformed IL-4 + IL-7 in specificity and expansion, especially in the desirable CD8+ T cell compartment. These results demonstrate the functional implications of IL-15-, IL-4-, and IL-7-containing cocktails for therapeutic T cell expansion, which could have broad implication for cellular therapy, and pioneer the use of RNA sequencing (RNA-seq) to guide viral-specific T cell (VST) product manufacturing.

2.
Blood ; 140(3): 208-221, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1724390

ABSTRACT

Patients with blood disorders who are immune suppressed are at increased risk for infection with severe acute respiratory syndrome coronavirus 2. Sequelae of infection can include severe respiratory disease and/or prolonged duration of viral shedding. Cellular therapies may protect these vulnerable patients by providing antiviral cellular immunity and/or immune modulation. In this recent review of the field, phase 1/2 trials evaluating adoptive cellular therapies with virus-specific T cells or natural killer cells are described along with trials evaluating the safety, feasibility, and preliminary efficacy of immune modulating cellular therapies including regulatory T cells and mesenchymal stromal cells. In addition, the immunologic basis for these therapies is discussed.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Humans , Immunity, Cellular , SARS-CoV-2 , Virus Shedding
3.
Front Immunol ; 12: 793197, 2021.
Article in English | MEDLINE | ID: covidwho-1674334

ABSTRACT

Background: Despite similar rates of infection, adults and children have markedly different morbidity and mortality related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Compared to adults, children have infrequent severe manifestations of acute infection but are uniquely at risk for the rare and often severe Multisystem Inflammatory Syndrome in Children (MIS-C) following infection. We hypothesized that these differences in presentation are related to differences in the magnitude and/or antigen specificity of SARS-CoV-2-specific T cell (CST) responses between adults and children. We therefore set out to measure the CST response in convalescent adults versus children with and without MIS-C following SARS-CoV-2 infection. Methods: CSTs were expanded from blood collected from convalescent children and adults post SARS-CoV-2 infection and evaluated by intracellular flow cytometry, surface markers, and cytokine production following stimulation with SARS-CoV-2-specific peptides. Presence of serum/plasma antibody to spike and nucleocapsid was measured using the luciferase immunoprecipitation systems (LIPS) assay. Findings: Twenty-six of 27 MIS-C patients, 7 of 8 non-MIS-C convalescent children, and 13 of 14 adults were seropositive for spike and nucleocapsid antibody. CST responses in MIS-C patients were significantly higher than children with uncomplicated SARS-CoV-2 infection, but weaker than CST responses in convalescent adults. Interpretation: Age-related differences in the magnitude of CST responses suggest differing post-infectious immunity to SARS-CoV-2 in children compared to adults post uncomplicated infection. Children with MIS-C have CST responses that are stronger than children with uncomplicated SARS-CoV-2 infection and weaker than convalescent adults, despite near uniform seropositivity.


Subject(s)
COVID-19/complications , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/immunology , Child , Child, Preschool , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
J Pediatr ; 237: 125-135.e18, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1316558

ABSTRACT

OBJECTIVE: To assess demographic, clinical, and biomarker features distinguishing patients with multisystem inflammatory syndrome in children (MIS-C); compare MIS-C sub-phenotypes; identify cytokine biosignatures; and characterize viral genome sequences. STUDY DESIGN: We performed a prospective observational cohort study of 124 children hospitalized and treated under the institutional MIS-C Task Force protocol from March to September 2020 at Children's National, a quaternary freestanding children's hospital in Washington, DC. Of this cohort, 63 of the patients had the diagnosis of MIS-C (39 confirmed, 24 probable) and 61 were from the same cohort of admitted patients who subsequently had an alternative diagnosis (controls). RESULTS: Median age and sex were similar between MIS-C and controls. Black (46%) and Latino (35%) children were over-represented in the MIS-C cohort, with Black children at greatest risk (OR 4.62, 95% CI 1.151-14.10; P = .007). Cardiac complications were more frequent in critically ill patients with MIS-C (55% vs 28%; P = .04) including systolic myocardial dysfunction (39% vs 3%; P = .001) and valvular regurgitation (33% vs 7%; P = .01). Median cycle threshold was 31.8 (27.95-35.1 IQR) in MIS-C cases, significantly greater (indicating lower viral load) than in primary severe acute respiratory syndrome coronavirus 2 infection. Cytokines soluble interleukin 2 receptor, interleukin [IL]-10, and IL-6 were greater in patients with MIS-C compared with controls. Cytokine analysis revealed subphenotype differences between critically ill vs noncritically ill (IL-2, soluble interleukin 2 receptor, IL-10, IL-6); polymerase chain reaction positive vs negative (tumor necrosis factor-α, IL-10, IL-6); and presence vs absence of cardiac abnormalities (IL-17). Phylogenetic analysis of viral genome sequences revealed predominance of GH clade originating in Europe, with no differences comparing patients with MIS-C with patients with primary coronavirus disease 19. Treatment was well tolerated, and no children died. CONCLUSIONS: This study establishes a well-characterized large cohort of MIS-C evaluated and treated following a standardized protocol and identifies key clinical, biomarker, cytokine, viral load, and sequencing features. Long-term follow-up will provide opportunity for future insights into MIS-C and its sequelae.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/etiology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Case-Control Studies , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Male , Pandemics , Phenotype , Phylogeny , Prospective Studies , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL